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Global Dynamics of Classical Solutions to
a Model of Mixing Flow

Kun Zhao

AAbstract - We study the long-time dynamics of classical solutions to an initial-boundary value problem for modeling 
equations of a two-component mixture. Time asymptotically, it is shown that classical solutions converge 
exponentially to constant equilibrium states as time goes to infinity for large initial data, due to diffusion and 
boundary effects.
Keywords and phrases : Mixing Flow, Classical Solution, Large-Time Asymptotic Behavior.

I. INTRODUCTION

As one of the core questions in mathematical fluid dynamics, the large-time asymptotic

behavior of solutions to Cauchy problem or initial-boundary value problems for model-

ing equations is of central interest to researchers. Not only is the question physically

important, it is also mathematically challenging. Positive answer to this question will

undoubtedly benefit mathematicians, physicists and engineers. As is well known, the

Navier-Stokes equations (NSE) have been one of the most important modeling systems

in mathematical fluid dynamics for more than one hundred years. The comprehension of

quantitative and qualitative behavior of the NSE plays an important role in understanding

core problems in fluid mechanics, such as the onset of turbulence.

In this paper, we consider the following system of equations:

(MF)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(ρU)t + ∇ · (ρU ⊗ U) + ∇P = ∇ · (μ∇U − λρ[(∇U) + (∇U)T] + ∇(λρU)
)
+

∇(∇ · (λρU)
)

+ ρ�f,

ρt + ∇ · (ρU) = λΔρ,

∇ · U = 0,

which describes the motion of an incompressible two-component mixture under the in-

fluence of external forces, with a diffusive mass exchange among the medium particles

of various density accounted for [2]. Here, ρ is the density of the mixture, U = (u, v) is

the mean velocity, the constants μ > 0 and λ > 0 model viscous dissipation and mass

exchange, respectively, and �f stands for external forces. For classical solutions, using the
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second and third equations, (MF) can be simplified to
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(1.1)

⎧⎪⎪⎨⎪⎪⎩
ρ(Ut + U · ∇U) + ∇P = λ

(∇ρ · ∇U + U · ∇(∇ρ)
)

+ μΔU + ρ�f,

ρt + U · ∇ρ = λΔρ,

∇ · U = 0.

System (1.1) generalizes the standard density-dependent incompressible Navier-Stokes

equations for non-homogeneous fluid flows:

(NS)

⎧⎪⎪⎨⎪⎪⎩
ρ(Ut + U · ∇U) + ∇P = μΔU + ρ�f,

ρt + U · ∇ρ = 0,

∇ · U = 0,

which are important in applied fields of fluid dynamics such as oceanology and hydrology,

and have been well-studied. We refer the reader to [2, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] and

references therein for details. It should be pointed out that a characteristic mathematical

feature of (1.1) is its non-diagonality in its main part, which significantly distinguishes

itself from (NS).

In real world, flows often move in bounded domains with constraints from boundaries,

where initial-boundary value problems appear. Solutions to initial-boundary value prob-

lems usually exhibit different behaviors and much richer phenomena comparing with the

Cauchy problem. In this paper, we consider (1.1) on a bounded domain in R2, and the

system is supplemented by the following initial and boundary conditions:

(1.2)

{
(U, ρ)(x, 0) = (U0, ρ0)(x), m ≤ ρ0(x) ≤ M ;

U |∂Ω = 0, ∇ρ · n|∂Ω = 0,

where Ω ⊂ R2 is a bounded domain with smooth boundary ∂Ω, n is the unit outward

normal to ∂Ω and m, M are positive constants.

It is well-known that classical solutions to (1.1)–(1.2) exist globally (locally resp.) in

time in 2D (3D resp.) (c.f. [2]). However, to the best of the author’s knowledge, the

large-time asymptotic behavior of the solutions is not well-understood in the literature.

In particular, the dynamics of the higher order modes of the solutions is not known. The

purpose of this paper is to show that, under certain conditions on the external forcing

term �f , the constant equilibrium state (ρ̄,0) is a global attractor of (1.1)–(1.2), for large

initial data. Additionally, it is shown that the total Sobolev norm of the perturbation

(ρ − ρ̄, U − 0) up to the highest oder of derivatives converges exponentially in time due

to the boundary effects. Here, ρ̄ is the spatial average of ρ over Ω, which is a constant

due to the conservation of total mass. The proof requires intensive applications of classi-

cal inequalities (Sobolev, Gagliardo-Nirenberg type) and tremendous amount of accurate

energy estimates.

Throughout this paper, ‖ · ‖Lp , ‖ · ‖L∞ and ‖ · ‖W s,p denote the norms of the usual

Lebesgue measurable function spaces Lp (1 ≤ p < ∞), L∞ and the usual Sobolev space

Global Dynamics of Classical Solutions to a Model of Mixing Flow

W s,p, respectively. For p = 2, we denote the norm ‖ · ‖L2 by ‖ · ‖ and ‖ · ‖W s,2 by ‖ · ‖Hs .

For simplicity, we will use the following notation: ‖(f1, f2, ..., fm)‖X ≡ ∑m
i=1 ‖fi‖X . The
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function spaces under consideration are C([0, T ]; H3(Ω)) and L2([0, T ]; H4(Ω)), equipped

with norms sup0≤t≤T ‖Ψ(·, t)‖H3 and
( ∫ T

0
‖Ψ(·, t)‖2

H4dt
)1/2

, respectively. Unless specified,

ci will denote generic constants which are independent of ρ, U and t, but may depend on

Ω, λ, μ, M, m, ρ0 and U0.

Our main results are summarized in the following theorem.

Theorem 1.1. Let Ω ⊂ R2 be a bounded domain with smooth boundary and suppose

that the constant μ1 = 2μ − λ(M − m) > 0. Suppose that the external force �f is

a potential flow, i.e., �f = ∇φ for some scalar function φ : Ω × [0,∞) → R. Fur-

thermore, suppose that there exists a constant F1 > 0 independent of t ≥ 0 such that

‖�f‖2
C([0,t];H1(Ω)) + ‖�f‖2

L2([0,t];H2(Ω)) + ‖�ft‖2
C([0,t];L2(Ω)) ≤ F1 for any t ≥ 0. If the initial

data (ρ0(x), U0(x)) ∈ H3(Ω) are compatible with the boundary conditions, then there

exists a unique solution (ρ, U) to (1.1)–(1.2) globally in time such that (ρ, U)(x, t) ∈
C([0, T ); H3(Ω)) ∩ L2([0, T ); H4(Ω)) for any T ≥ 0. Moreover, there exist positive con-

stants α, β and γ independent of t such that the solution satisfies

‖(ρ − ρ̄, U)(·, t)‖2
H3 ≤αe−βt, and

∫ t

0

‖(ρ − ρ̄, U)(·, τ)‖2
H4dτ ≤ γ, ∀ t ≥ 0;

m ≤ ρ(x, t) ≤ M, ∀ t ≥ 0, x ∈ Ω,

where m and M are given in (1.2).

Remark 1.1. The external forcing term �f includes important applications such as �f =

e2 = (0, 1)T, which stands for the effect of gravitational force. Physically speaking, the re-

sults indicate that, when the viscous dissipation dominates the mass exchange rate, as time

goes on, the velocity of the flow will slow down and the mixture tends to be homogeneous.

Remark 1.2. The condition on the diffusion coefficients and the upper-lower bounds of the

density can be roughly understood by looking at the stress tensor in the momentum equation

in (MF), where competition between viscous dissipation and mass exchange occurs.

Remark 1.3. One can generalize the results by manipulating on various boundary con-

ditions for ρ and U . For example, one can work on the Dirichlet boundary condition

ρ|∂Ω = ρ̃, for some constant m ≤ ρ̃ ≤ M . In this case, the lower and upper bounds of ρ

are direct consequences of maximum principle for parabolic equations, and the equilibrium

state of ρ is ρ̃. On the other hand, the results may also be generalized to the Navier type

slip boundary condition U · n|∂Ω = 0, ω|∂Ω = 0, where ω is the 2D vorticity. Since the

underlying analysis is in the similar fashion, we shall not go through the details in this

paper.

The main difficulties of the proof of Theorem 1.1 come from the estimation of the higher

order derivatives of the solution, due to the coupling between the velocity and density

equations by convection, diffusion, external force and boundary effects. With the density

function and the additional nonlinear terms ∇ρ · ∇U and U · ∇(∇ρ) standing in the

velocity equation, the decay of the higher order derivatives of U is an substantial barrier

to overcome. Great efforts have been made to simplify the proof. Current proof involves
intensive applications of fundamental inequalities, together with exhaustive combinations

Global Dynamics of Classical Solutions to a Model of Mixing Flow
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of energy inequalities. The results on Stokes equation by Temam [17], see lemma 2.1, are

important in our energy framework. Roughly speaking, because of the lack of the spatial

derivatives of the solution at the boundary, our energy framework proceeds as follows:

We first apply the standard energy estimate on the solution and the temporal derivatives

of the solution. We then apply Temam’s results on Stokes equation to recover the spatial

derivatives. Such a process will be repeated up to the third order, and then the carefully

coupled estimates will be composed into a desired one leading to global regularity and

exponential decay of the solution. The condition �f = ∇φ is crucial in our analysis due

to the fact that, by combining ρ̄∇φ with ∇P , the density perturbation on the right hand

side of the velocity equation will be dominated by the diffusion in the density equation,

by virtue of Poincaré inequality. This enables us to combine various energy estimates

which eventually lead to the exponential decay of the solution. The result suggests that

the diffusions are strong enough to compensate the effects of external force and nonlinear

convection in order to prevent the development of singularity of the system and to force

the solution to converge to the equilibrium state.

The rest of this paper is organized as follows. In Section 2, we give some basic facts

that will be used in this paper. We then prove Theorem 1.1 in Section 3.

In this section, we will list several facts which will be used in the proof of Theorem 1.1.

First we recall some useful results from [17].

II. PRELIMINARIES

Lemma 2.1. Let Ω be any open bounded domain in R2 with smooth boundary ∂Ω. Con-

sider the Stokes problem ⎧⎪⎪⎨⎪⎪⎩
− μΔU + ∇P = F in Ω,

∇ · U = 0 in Ω,

U = 0 on ∂Ω.

If F ∈ Wm,p, then U ∈ Wm+2,p, P ∈ Wm+1,p and there exists a constant c1 = c1(μ, m, p, Ω)

such that
‖U‖2

W m+2,p + ‖P‖2
W m+1,p ≤ c1‖F‖2

W m,p

for any p ∈ (1,∞) and the integer m ≥ −1.

The next lemma will be used in the estimation of higher order spatial derivatives of ρ

(c.f. [3]).

Lemma 2.2. Let Ω ⊂ R2 be any open bounded domain with smooth boundary ∂Ω, and let

G ∈ W s,p(Ω) be a vector-valued function satisfying ∇× G = 0 and G · n|∂Ω = 0, where n

is the unit outward normal to ∂Ω. Then there exists a constant c2 = c2(s, p, Ω) such that

‖G‖2
W s,p ≤ c2(‖∇ · G‖2

W s−1,p + ‖G‖2
Lp)

for any s ≥ 1 and p ∈ (1,∞).

As a consequence of Poincaré inequality and Lemma 2.2 we have

Lemma 2.3. Let Ω ⊂ R2 be any open bounded domain with smooth boundary ∂Ω. For

any function Hs(Ω) � f : Ω → R satisfying ∇f · n|∂Ω = 0, let f̄ = 1
|Ω|

∫
Ω

fdx, where the

[17]
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integer s ≥ 2. Then there exists a constant c3 = c3(Ω, s) such that

‖f − f̄‖2
Hs ≤ c3‖Δf‖2

Hs−2 .

We also need the following Sobolev and Ladyzhenskaya type inequalities which are

well-known and standard (c.f. [1, 4, 16]).

Lemma 2.4. Let Ω ⊂ R2 be any open bounded domain with smooth boundary ∂Ω. Then

the following embeddings and inequalities hold:

(i) ‖f‖2
Lp ≤ c4‖f‖2

H1 , ∀ 1 < p < ∞;

(ii) ‖f‖2
L∞ ≤ c5‖f‖2

W 1,p , ∀ 2 < p < ∞;

(iii) ‖f‖2
L4 ≤ c6‖f‖‖∇f‖, ∀ f ∈ H1

0 (Ω);

(iv) ‖f‖2
L4 ≤ c7

(‖f‖‖∇f‖ + ‖f‖2
)
, ∀ f ∈ H1(Ω),

for some constants ci = ci(p, Ω), i = 4, ..., 7.

III. LARGE-TIME BEHAVIOR

a) Reformulation

In this section we prove Theorem 1.1. Since the global existence has been established

in [2], we only show the large-time behavior of the solution. The proof is based on several

steps of careful energy estimates which are stated as a sequence of lemmas. First of all,

the L∞ estimate of ρ is a direct consequence of the maximum principle:

Lemma 3.1. Under the assumptions of Theorem 1.1, it holds that

m ≤ ρ(x, t) ≤ M, ∀ t ≥ 0, x ∈ Ω.

In order to perform the asymptotic analysis, we first reformulate the original problem

(1.1)–(1.2) to get a new one for the perturbation (ρ − ρ̄, U). Letting θ = ρ − ρ̄ and

Q = P − ρ̄φ we have

(3.1)

⎧⎪⎪⎨⎪⎪⎩
ρ(Ut + U · ∇U) + ∇Q = λ

(∇θ · ∇U + U · ∇(∇θ)
)

+ μΔU + �fθ,

θt + U · ∇θ = λΔθ,

∇ · U = 0.

The initial and boundary conditions turn out to be

(3.2)

{
(U, θ)(x, 0) = (U0, θ0)(x) ≡ (U0, ρ0 − ρ̄)(x);

U |∂Ω = 0, ∇θ · n|∂Ω = 0.

Lemma 3.2. Under the assumptions of Theorem 1.1, there exist positive constants α1, β1

and γ1 independent of t such that for any t ≥ 0 it holds that

‖(U, θ)(·, t)‖2 ≤ α1e
−β1t, and

∫ t

0

‖(U, θ)(·, τ)‖2
H1dτ ≤ γ1.

b) Decay of ‖(U, θ)‖

[2
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Notes

Proof. The lemma is proved through careful exploration of the structure of the system.

First of all, by taking L2 inner product of (3.1)1 with U we have∫
Ω

ρ

( |U |2
2

)
t

dx +

∫
Ω

ρU · ∇
( |U |2

2

)
dx + μ

∫
Ω

|∇U |2dx

=λ

∫
Ω

∇θ · ∇
( |U |2

2

)
dx + λ

∫
Ω

(
U · ∇(∇θ)

) · Udx +

∫
Ω

θ �f · Udx.

After integration by parts and using the incompressibility condition we have

1

2

d

dt

∫
Ω

ρ|U |2dx − 1

2

∫
Ω

θt|U |2dx − 1

2

∫
Ω

∇ · (θU)|U |2dx + μ

∫
Ω

|∇U |2dx

= − λ

2

∫
Ω

Δθ|U |2dx + λ

∫
Ω

(
U · ∇(∇θ)

) · Udx +

∫
Ω

θ �f · Udx.

Using (3.1)2 we simplify the above equation as

(3.3)
1

2

d

dt

∫
Ω

ρ|U |2dx + μ

∫
Ω

|∇U |2dx = λ

∫
Ω

[
U · ∇(∇θ)

] · Udx +

∫
Ω

θ �f · Udx.

For the first term on the RHS of (3.3), by direct calculations we have

(3.4)
[
U · ∇(∇θ)

] · U = ∇ · [U(U · ∇θ) − (θU · ∇U)
]
+ θ(u2

x + 2uyvx + v2
y).

Therefore, integrating (3.4) over Ω using the boundary condition we get

(3.5)

∫
Ω

[
U · ∇(∇θ)

] · Udx =

∫
Ω

θ(u2
x + 2uyvx + v2

y)dx.

Using (3.5) we update (3.3) as

(3.6)
1

2

d

dt
‖√ρU‖2 + μ‖∇U‖2 = λ

∫
Ω

θ(u2
x + 2uyvx + v2

y)dx +

∫
Ω

θ �f · Udx.

Since ∇ · U = 0, we have

u2
x + 2uyvx + v2

y = ∇ · (U · ∇U) − U · ∇(∇ · U) = ∇ · (U · ∇U),

which implies that ∫
Ω

(u2
x + 2uyvx + v2

y)dx = 0.

Since ρ̄ is a constant, it follows from (3.6) and the above identity that

(3.7)
1

2

d

dt
‖√ρU‖2 + μ‖∇U‖2 = λ

∫
Ω

(
ρ − M + m

2

)
(u2

x + 2uyvx + v2
y)dx +

∫
Ω

θ �f · Udx.

∣∣∣∣λ ∫
Ω

(
ρ − M + m

2

)
(u2

x + 2uyvx + v2
y)dx +

∫
Ω

θ �f · Udx

∣∣∣∣
≤λ

M − m

2
‖∇U‖2 +

∫
Ω

|θ �f · U |dx.

Using Lemma 3.1 we estimate the RHS of (3.7) as follows:

Global Dynamics of Classical Solutions to a Model of Mixing Flow
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We remark that the coefficient of ‖∇U‖2 on the RHS of the above estimate is optimal.

So we update (3.7) as

(3.8)
d

dt
‖√ρU‖2 + μ1‖∇U‖2 ≤ 2

∫
Ω

|θ �f · U |dx,

where μ1 = 2μ − λ(M − m) > 0. Using Cauchy-Schwarz and Poincaré inequalities we

estimate the RHS of (3.8) as:

(3.9)

2

∫
Ω

|θ �f · U |dx ≤ μ1

2c0

‖U‖2 +
2c0

μ1

‖�fθ‖2

≤ μ1

2
‖∇U‖2 +

2c0

μ1

‖�fθ‖2.

Since ‖�f‖2
C([0,t];H1(Ω)) ≤ F1, by Lemma 2.4 (i) we have

(3.10)

c0

2μ1

‖�fθ‖2 ≤ c0

2μ1

‖�f‖2
L4‖θ‖2

L4

≤ c0c
2
4

2μ1

‖�f‖2
H1‖θ‖2

H1

≤ c0c
2
4F1

2μ1

(1 + c0)‖∇θ‖2.

Let c8 = c0c
2
4F1(1 + c0)/(2μ1). Combining (3.8)–(3.10) we have

(3.11)
d

dt
‖√ρU‖2 +

μ1

2
‖∇U‖2 ≤ c8‖∇θ‖2.

The RHS of (3.11) will be compensated by the diffusion in the temperature equation.

Taking L2 inner product of (3.1)2 with θ we have

(3.12)
d

dt
‖θ‖2 + 2λ‖∇θ‖2 = 0.

Then the operation (3.12) × c8/λ + (3.11) yields

(3.13)
d

dt

(
c8

λ
‖θ‖2 + ‖√ρU‖2

)
+ c8‖∇θ‖2 +

μ1

2
‖∇U‖2 ≤ 0.

Since ρ ≤ M , we have

‖√ρU‖2 ≤ M‖U‖2 ≤ c0M‖∇U‖2.

It follows from (3.13) that

(3.14)
d

dt

(
c8

λ
‖θ‖2 + ‖√ρU‖2

)
+ β1

(
c8

λ
‖θ‖2 + ‖√ρU‖2

)
≤ 0,

where

Solving the differential inequality (3.14) we have

(3.16)

(
c8

λ
‖θ‖2 + ‖√ρU‖2

)
≤
(

c8

λ
‖θ0‖2 + ‖√ρ0U0‖2

)
e−β1t.

(3.15)β1 = min

{
λ

c0

,
μ1

2c0M

}
.

Global Dynamics of Classical Solutions to a Model of Mixing Flow
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c) Decay of

Since ρ ≥ m, we get from (3.16) that

(3.17)‖(U, θ)(·, t)‖2 ≤ α1e
−β1t, ∀ t ≥ 0,

where

(3.18)α1 =

(
min

{
c8

λ
, m

})−1(
c8

λ
‖θ0‖2 + ‖√ρ0U0‖2

)
.

Next, upon integrating (3.13) in time and dropping the positive term from the LHS we

have ∫ t

0

c8‖∇θ(·, τ)‖2 +
μ1

2
‖∇U(·, τ)‖2dτ ≤ c8

λ
‖θ0‖2 + ‖√ρ0U0‖2, ∀ t ≥ 0,

which, together with (3.17), yields

(3.19)

∫ t

0

‖(U, θ)(·, τ)‖2
H1dτ ≤ γ1, ∀ t ≥ 0,

where

(3.20)γ1 =
α1

β1

+

(
c8

λ
‖θ0‖2 + ‖√ρ0U0‖2

)(
min{c8, μ1/2})−1

.

This completes the proof.

Remark 3.1. The idea of the above proof will be appplied to prove the exponential decay

of higher order derivatives of the solution. From (3.15) we see clearly that, the decay rate

β1 tends to zero, as either λ or μ1 = 2μ−λ(M −m) tends to zero. Furthermore, by (3.18)

we have α1 → ∞, as λ → 0 or μ1 → 0. Therefore, as the value of λ either decreases or

approaches the threshold value 2μ
M−m

, the decay of the solution will slow down. By direct

calculation we know that the decay rate reaches its maximum when λ = 2μ
3M−m

.

Remark 3.2. In what follows, since tremendous amount of combinations of energy es-

timates will be involved when we deal with the decay of higher order derivatives of the

solution, the expressions of the constants appearing in the proofs will become lengthy and

hard to read. Therefore, to simplify the presentation, we shall not specify ci, αi, βi, γi in

terms of the other time-independent constants.

‖θ‖H1

Lemma 3.3. Under the assumptions of Theorem 1.1, there exist positive constants α2, β2

and γ2 independent of t such that for any t ≥ 0 it holds that

‖∇θ(·, t)‖2 ≤ α2e
−β2t, and

∫ t

0

‖Δθ(·, τ)‖2 + ‖θt(·, τ)‖2dτ ≤ γ2.

(3.21)
1

2

d

dt
‖∇θ‖2 + λ‖Δθ‖2 =

∫
Ω

(U · ∇θ)Δθ dx.

Using Cauchy-Schwarz and Hölder inequalities we estimate the RHS of (3.21) as∣∣∣∣ ∫
Ω

(U · ∇θ)Δθdx

∣∣∣∣ ≤ 1

λ
‖U · ∇θ‖2 +

λ

4
‖Δθ‖2

≤ 1

λ
‖U‖2

L4‖∇θ‖2
L4 +

λ

4
‖Δθ‖2.

Proof. Taking L2 inner product of (3.1)2 with Δθ we have
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So we update (3.21) as

(3.22)
1

2

d

dt
‖∇θ‖2 +

3

4
λ‖Δθ‖2 ≤ 1

λ
‖U‖2

L4‖∇θ‖2
L4 .

Applying Lemma 2.4 (iii) to the RHS of (3.22) we have

(3.23)
1

λ
‖U‖2

L4‖∇θ‖2
L4 ≤ c9‖U‖‖∇U‖‖∇θ‖‖D2θ‖ + c9‖U‖‖∇U‖‖∇θ‖2.

For the first term on the RHS of (3.23), using Lemma 2.3 for ‖D2θ‖2 and Lemma 3.2 for

‖U‖2 we have

(3.24)

c9‖U‖‖∇U‖‖∇θ‖‖D2θ‖ ≤ c10‖∇U‖‖∇θ‖‖Δθ‖

≤ c11‖∇U‖2‖∇θ‖2 +
λ

4
‖Δθ‖2.

Applying Poincaré inequality to the second term on the RHS of (3.23) we have

(3.25)c9‖U‖‖∇U‖‖∇θ‖2 ≤ c12‖∇U‖2‖∇θ‖2.

Combining (3.23)–(3.25) we have

(3.26)
1

λ
‖U‖2

L4‖∇θ‖2
L4 ≤ c13‖∇U‖2‖∇θ‖2 +

λ

4
‖Δθ‖2.

Plugging (3.26) into (3.22) we have

(3.27)
1

2

d

dt
‖∇θ‖2 +

λ

2
‖Δθ‖2 ≤ c13‖∇U‖2‖∇θ‖2.

Gronwall inequality and Lemma 3.2 then yield (by dropping λ
2
‖Δθ‖2)

(3.28)‖∇θ(·, t)‖2 ≤ exp

{
2c13

∫ t

0

‖∇U‖2dτ

}
‖∇θ0‖2 ≤ e2c13γ1‖∇θ0‖2 ≡ c14.

Plugging (3.28) into (3.27) we have

(3.29)
1

2

d

dt
‖∇θ‖2 +

λ

2
‖Δθ‖2 ≤ c15‖∇U‖2.

To deal with the RHS of (3.29), we consider the estimate (3.13). The combination

(3.13) × 4c15
μ1

+ (3.29) gives

(3.30)
d

dt

(
E1(t)

)
+

4c8c15

μ1

‖∇θ‖2 + c15‖∇U‖2 +
λ

2
‖Δθ‖2 ≤ 0,

where

(3.31)E1(t) =
4c15

μ1

(
c8

λ
‖θ‖2 + ‖√ρU‖2

)
+

1

2
‖∇θ‖2.

Using Poincaré inequality one easily checks that there exists a constant β2 > 0 independent

of t such that

(3.32)β2E1(t) ≤
(

4c8c15

μ1

‖∇θ‖2 + c15‖∇U‖2

)
,

Using (3.32) we update (3.30) as

(3.33)
d

dt

(
E1(t)

)
+ β2E1(t) +

λ

2
‖Δθ‖2 ≤ 0,

Global Dynamics of Classical Solutions to a Model of Mixing Flow
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which implies that

(3.34)E1(t) ≤ e−β2tE1(0), and
λ

2

∫ t

0

‖Δθ(·, τ)‖2dτ ≤ E1(0), ∀ t ≥ 0.

By (3.31) and (3.34) we see that

(3.35)‖∇θ(·, t)‖2 ≤ α2e
−β2t, and

∫ t

0

‖Δθ(·, τ)‖2dτ ≤ 2E1(0)/λ, ∀ t ≥ 0,

where α2 = 2E1(0).

To estimate θt, we consider (3.1)2. Using (3.26) and (3.35) we have

(3.36)

‖θt‖2 ≤ 2‖U · ∇θ‖2 + 2‖λΔθ‖2

≤ 2‖U‖2
L4‖∇θ‖2

L4 + 2λ2‖Δθ‖2

≤ c16

(‖Δθ‖2 + ‖∇U‖2‖∇θ‖2
)

+ 2λ2‖Δθ‖2

≤ c17

(‖Δθ‖2 + ‖∇U‖2
)
.

Integrating (3.36) in time over [0, t] and using Lemma 3.2 and (3.35) we have

(3.37)

∫ t

0

‖θt(·, τ)‖2dτ ≤ c18, ∀ t ≥ 0.

We conclude the proof by combining (3.35) and (3.37).

d) Estimate of kUkH2
Now we turn to higher order estimates of the solution. The next lemma gives the control

of ‖U‖H2 by ‖∇U‖, ‖Ut‖ and estimates of θ. The proof involves intensive applications of

Sobolev and Ladyzhenskaya type inequalities.

Lemma 3.4. Under the assumptions of Theorem 1.1, for any positive numbers ε and δ,

there exists a constant d(ε, δ) independent of t and dependent on ε and δ such that

‖U‖2
H2 ≤ δ‖∇θt‖2 + ε‖U‖2

H2 + d(ε, δ)
(‖∇U‖2‖θ‖2

H2 + ‖∇U‖4 + ‖Ut‖2 + ‖θ‖2
H1

)
.

Proof. We rewrite the velocity equation (3.1)1 as the 2D Stokes equation:

−μΔU + ∇P = �F ,

where

�F = −ρUt − ρU · ∇U + λ∇θ · ∇U + λU · ∇(∇θ) + �fθ ≡
5∑

i=1

Fi.

Since U |∂Ω = 0, it follows from Lemma 2.1 that

(3.38)‖U‖2
H2 ≤ 16c1

5∑
i=1

‖Fi‖2.

Now we estimate the summand on the RHS of (3.38) as follows: Using Lemma 3.1 we

have

(3.39)‖F1‖2 = ‖ρUt‖2 ≤ M2‖Ut‖2.

Global Dynamics of Classical Solutions to a Model of Mixing Flow
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Using Lemma 2.4 (iii), Lemma 3.1 and Lemma 3.3, we have, for any ε > 0:

(3.40)

‖F2‖2 = ‖ρU · ∇U‖2

≤ M2‖U‖2
L4‖∇U‖2

L4

≤ c19‖U‖‖∇U‖(‖∇U‖‖D2U‖ + ‖∇U‖2
)

≤ c20‖∇U‖2‖U‖H2

≤ c21

ε
‖∇U‖4 +

ε

48c1

‖U‖2
H2 .

For F3, it follows from Lemma 3.3 that

(3.41)

‖F3‖2 = λ2‖∇θ · ∇U‖2

≤ c22

(‖∇θ‖‖D2θ‖ + ‖∇θ‖2
)(‖∇U‖‖D2U‖ + ‖∇U‖2

)
≤ c23

(‖D2θ‖ + ‖∇θ‖)(‖D2U‖ + ‖∇U‖)‖∇U‖
≤ c24

ε
‖θ‖2

H2‖∇U‖2 +
ε

48c1

‖U‖2
H2 .

For the estimate of F4, by Lemma 2.3 and Lemma 2.4 we have

(3.42)
‖F4‖2 = λ2‖U · ∇(∇θ)‖2

≤ c25‖U‖‖∇U‖‖D2θ‖(‖D3θ‖ + ‖D2θ‖).
To estimate ‖D3θ‖, by Lemma 2.2 we have

(3.43)

‖D3θ‖ ≤ √
c3‖Δθ‖H1

≤ c26

(‖∇θt‖ + ‖∇(U · ∇θ)‖ + ‖Δθ‖)
≤ c27

(‖∇θt‖ + ‖∇U · (∇θ)T‖ + ‖U · ∇(∇θ)‖ + ‖Δθ‖).
Plugging (3.43) into (3.42) we have

(3.44)
λ2‖U · ∇(∇θ)‖2

≤c28‖U‖‖∇U‖‖D2θ‖(‖∇θt‖ + ‖∇U · (∇θ)T‖ + ‖U · ∇(∇θ)‖ + ‖θ‖H2

)
.

Using Lemma 3.2 and Poincaré inequality we estimate the RHS of (3.44) as follows:

c28‖U‖‖∇U‖‖D2θ‖(‖∇θt‖ + ‖∇U · (∇θ)T‖ + ‖U · ∇(∇θ)‖ + ‖θ‖H2

)
≤c29‖∇U‖‖θ‖H2

(‖∇θt‖ + ‖∇U · (∇θ)T‖ + ‖U · ∇(∇θ)‖) + c30‖∇U‖2‖θ‖2
H2

≤ δ

32c1

‖∇θt‖2 +
λ2

2
‖U · ∇(∇θ)‖2 +

c31(δ)

2δ
‖∇U‖2‖θ‖2

H2 +
1

2
‖∇U · (∇θ)T‖2.

Combining the preceding estimate with (3.44) we have

(3.45)‖F4‖2 ≤ δ

16c1

‖∇θt‖2 +
c31(δ)

δ
‖∇U‖2‖θ‖2

H2 + ‖∇U · (∇θ)T‖2.

In a similar fashion as deriving (3.41) we have

‖∇U · (∇θ)T‖2 ≤ c32

ε
‖∇U‖2‖θ‖2

H2 +
ε

48c1

‖U‖2
H2 ,
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which, together with (3.45), yields

(3.46)‖F4‖2 ≤ δ

16c1

‖∇θt‖2 +
ε

48c1

‖U‖2
H2 +

(
c31(δ)

δ
+

c32

ε

)
‖∇U‖2‖θ‖2

H2 .

Finally, using Lemma 2.4 (i) and the condition on �f we have

(3.47)‖F5‖2 = ‖�fθ‖2 ≤ ‖�f‖2
L4‖θ‖2

L4 ≤ c2
4F1‖θ‖2

H1 .

Collecting (3.39)–(3.41) and (3.46)–(3.47) and using (3.38) we complete the proof.

‖U‖H1

With the help of Lemma 3.4 we show the decay of ‖∇U‖ and ‖θt‖.

Lemma 3.5. Under the assumptions of Theorem 1.1, there exist positive constants α3, β3

and γ3 independent of t such that for any t ≥ 0 it holds that

‖(∇U, θt)(·, t)‖2 ≤ α3e
−β3t, and

∫ t

0

‖(∇θt, Ut)(·, τ)‖2dτ ≤ γ3.

Proof. Taking L2 inner product of (3.1)1 with Ut we have

(3.48)

μ

2

d

dt
‖∇U‖2 +

∫
Ω

ρ|Ut|2dx = −
∫

Ω

ρ(U · ∇U)Utdx+

λ

∫
Ω

[∇θ · ∇U + U · ∇(∇θ)
]
Utdx +

∫
Ω

θ �f · Utdx.

We estimate the RHS of (3.48) as follows: By Cauchy-Schwarz inequality we have

(3.49)

∣∣∣∣ − ∫
Ω

ρ(U · ∇U)Utdx + λ

∫
Ω

[∇θ · ∇U + U · ∇(∇θ)
]
Utdx +

∫
Ω

θ �f · Utdx

∣∣∣∣
≤m

8
‖Ut‖2 +

2

m

∥∥(ρU · ∇U + λ∇θ · ∇U + λU · ∇(∇θ) + �fθ
)∥∥2

.

e) Decay of

For the second term on the RHS of (3.49), it follows from the proof of Lemma 3.4 that

2

m

∥∥(ρU · ∇U + λ∇θ · ∇U + λU · ∇(∇θ) + �fθ
)∥∥2

≤λ

8
‖∇θt‖2 + ε1‖U‖2

H2 + c33(ε1)
(‖∇U‖2‖θ‖2

H2 + ‖∇U‖4 + ‖θ‖2
H1

)
,

(3.50)

μ

2

d

dt
‖∇U‖2 +

∫
Ω

ρ|Ut|2dx ≤m

8
‖Ut‖2 +

λ

8
‖∇θt‖2 + ε1‖U‖2

H2

+ c33(ε1)
(‖∇U‖2‖θ‖2

H2 + ‖∇U‖4 + ‖θ‖2
H1

)
.

Letting ε = 1/2 and δ = 1 in Lemma 3.4 we have

(3.51)‖U‖2
H2 ≤ c34

(‖∇U‖2‖θ‖2
H2 + ‖∇U‖4 + ‖Ut‖2 + ‖θ‖2

H1 + ‖∇θt‖2
)
.

where ε1 > 0 is a constant to be determined. So we update (3.48) as

Global Dynamics of Classical Solutions to a Model of Mixing Flow
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Plugging (3.51) into (3.50) we have

μ

2

d

dt
‖∇U‖2 +

∫
Ω

ρ|Ut|2dx ≤m

8
‖Ut‖2 +

λ

8
‖∇θt‖2 + ε1c34

(‖Ut‖2 + ‖∇θt‖2
)

+
(
c33(ε1) + c34

)(‖∇U‖2‖θ‖2
H2 + ‖∇U‖4 + ‖θ‖2

H1

)
.

Choosing ε1 = min{m/(8c34), λ/(8c34)} and using the fact that ρ ≥ m we have

(3.52)
μ

2

d

dt
‖∇U‖2 +

3m

4
‖Ut‖2 ≤ λ

4
‖∇θt‖2 + c35

(‖∇U‖2‖θ‖2
H2 + ‖∇U‖4 + ‖θ‖2

H1

)
.

Next, by taking the temporal derivative of (3.1)2 we have

(3.53)θtt + Ut · ∇θ + U · ∇θt = λΔθt.

Taking L2 inner product of (3.53) with θt we have

(3.54)
1

2

d

dt
‖θt‖2 + λ‖∇θt‖2 = −

∫
Ω

(Ut · ∇θ)θtdx.

Using Cauchy-Schwarz inequality we have

(3.55)

∣∣∣∣ − ∫
Ω

(Ut · ∇θ)θtdx

∣∣∣∣ ≤ m

4
‖Ut‖2 +

1

m
‖(∇θ)θt‖2

≤ m

4
‖Ut‖2 +

1

m
‖∇θ‖2

L4‖θt‖2
L4 .

For the RHS of (3.55), by Lemma 2.4 (iii) and Lemma 3.3 we have

(3.56)

1

m
‖∇θ‖2

L4‖θt‖2
L4 ≤ c36(‖∇θ‖‖D2θ‖ + ‖∇θ‖2)(‖θt‖‖∇θt‖ + ‖θt‖2)

≤ c37

(‖D2θ‖ + ‖∇θ‖)‖θt‖‖∇θt‖ + c36‖θ‖2
H2‖θt‖2

≤ λ

4
‖∇θt‖2 + c38‖θ‖2

H2‖θt‖2.

Combining (3.54)–(3.56) we have

(3.57)
1

2

d

dt
‖θt‖2 +

3λ

4
‖∇θt‖2 ≤ m

4
‖Ut‖2 + +c38‖θ‖2

H2‖θt‖2.

Coupling (3.52) and (3.57) we have

d

dt

(
μ‖∇U‖2 + ‖θt‖2

)
+ m‖Ut‖2 + λ‖∇θt‖2

(3.58)≤ c39

(‖∇U‖2‖θ‖2
H2 + ‖∇U‖4 + ‖θ‖2

H1 + ‖θ‖2
H2‖θt‖2

)
≤ c40

(‖θ‖2
H2 + ‖∇U‖2

)(
μ‖∇U‖2 + ‖θt‖2

)
+ c39‖θ‖2

H1 .

Applying Gronwall inequality to (3.58) and using Lemma 3.2 and Lemma 3.3 we have

(3.59)μ‖∇U‖2 + ‖θt‖2 ≤ c41, and

∫ t

0

m‖Ut‖2 + λ‖∇θt‖2dτ ≤ c42.

Plugging the first part of (3.59) into (3.58) we have

(3.60)
d

dt

(
μ‖∇U‖2 + ‖θt‖2

)
+ m‖Ut‖2 + λ‖∇θt‖2 ≤ c43

(‖θ‖2
H2 + ‖∇U‖2

)
.
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To show the exponential decay of ‖∇U‖ and ‖θt‖, we consider the estimate (3.30). By

absorbing the RHS of (3.60) into the LHS of (3.30) we have

(3.61)
d

dt

(
E2(t)

)
+ c44D2(t) ≤ 0,

for some constant c44 > 0 independent of t, where, by virtue of Poincaré inequality,

E2(t) ∼= ‖(U, θ)(·, t)‖2
H1 + ‖θt(·, t)‖2,

D2(t) ∼= ‖(U, θt)(·, t)‖2
H1 + ‖θ(·, t)‖2

H2 + ‖Ut(·, t)‖2.

Here ∼= denotes the equivalence of quantities. Then the lemma follows immediately from

(3.61) and (3.59). This completes the proof.

‖θ‖H2

Lemma 3.6. Under the assumptions of Theorem 1.1, there exist constants α4, β4, γ4 > 0

independent of t such that for any t ≥ 0 it holds that

‖θ(·, t)‖2
H2 ≤ α4e

−β4t, and

∫ t

0

‖U(·, τ)‖2
H2dτ ≤ γ4.

Proof. We note that, by Lemma 2.3, Lemma 2.4 and Lemma 3.5 it holds that

‖θ‖2
H2 ≤ c3‖Δθ‖2 ≤ c45

(‖θt‖2 + ‖U · ∇θ‖2
)

≤ c46

(‖θt‖2 + ‖U‖2
H1(‖∇θ‖‖θ‖H2 + ‖∇θ‖2)

)
≤ c47

(‖θt‖2 + ‖∇θ‖2
)

+
1

2
‖θ‖2

H2 ,

which implies that

(3.62)‖θ‖2
H2 ≤ c48

(‖θt‖2 + ‖∇θ‖2
)
.

Then the exponential decay of ‖θ‖2
H2 follows from Lemma 3.3 and Lemma 3.5.

Next, by (3.51) and Lemma 3.5 we have

(3.63)
‖U‖2

H2 ≤ c34

(‖∇U‖2‖θ‖2
H2 + ‖∇U‖4 + ‖Ut‖2 + ‖θ‖2

H1 + ‖∇θt‖2
)

≤ c49

(‖θ‖2
H2 + ‖∇U‖2 + ‖Ut‖2 + ‖∇θt‖2

)
,

which, together with Lemmas 3.2, 3.3 and 3.5, implies that∫ t

0

‖U(·, τ)‖2
H2dτ ≤ c50.

This completes the proof.

f) Decay of

g) Decay of and‖θ‖H3 ‖U‖H2

Lemma 3.7. Under the assumptions of Theorem 1.1, there exist positive constants α5, β5

and γ5 independent of t such that for any t ≥ 0 it holds that

‖U(·, t)‖2
H2 + ‖(∇θt, Ut)(·, t)‖2 ≤ α5e

−β5t, and

∫ t

0

‖(∇Ut, Δθt)(·, τ)‖2
H2dτ ≤ γ5.

Proof. Taking the temporal derivative of (3.1)1 we have

(3.64)θt(Ut + U · ∇U) + ρ(Utt + Ut · ∇U + U · ∇Ut) + ∇Pt
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=μΔUt + λ
(∇θt · ∇U + ∇θ · ∇Ut + Ut · ∇(∇θ) + U · ∇(∇θt)

)
+ �fθt + �ftθ.

Taking L2 inner product of (3.64) with Ut, after integration by parts, we have

1

2

d

dt
‖√ρUt‖2 + μ‖∇Ut‖2 +

1

2

∫
Ω

(θt − U · ∇θ)|Ut|2dx =
7∑

i=1

Ri + λ

∫
Ω

(∇θ · ∇Ut) · Utdx,

where

R1 = −
∫

Ω

(θtU · ∇U) · Utdx, R2 = −
∫

Ω

(ρUt · ∇U) · Utdx;

R3 = λ

∫
Ω

(∇θt · ∇U) · Utdx, R4 = λ

∫
Ω

(Ut · ∇(∇θ)) · Utdx,

R5 = −λ

∫
Ω

∇θt · (U · ∇Ut)dx;

R6 = λ

∫
Ω

θt
�f · Utdx, R7 = λ

∫
Ω

θ �ft · Utdx.

Using the boundary condition we have

λ

∫
Ω

(∇θ · ∇Ut) · Utdx = −λ

2

∫
Ω

Δθ|Ut|2dx.

Moreover, since θt = λΔθ − U · ∇θ, we have

(3.65)
1

2

d

dt
‖√ρUt‖2 + μ‖∇Ut‖2 =

9∑
i=1

Ri,

where

R8 =

∫
Ω

(U · ∇θ)|Ut|2dx, R9 = −λ

∫
Ω

Δθ|Ut|2dx.

We estimate Ri, i = 1, ..., 9 as follows: By Lemma 2.4, Lemma 3.5 and Poincaré inequality

we have
|R1| ≤ ‖θt‖L4‖U‖L4‖∇U‖L4‖Ut‖L4

≤ c51‖θt‖H1‖∇U‖H1‖Ut‖H1

≤ c52‖θt‖H1‖U‖H2‖∇Ut‖
≤ ε‖∇Ut‖2 +

c53

ε

(‖θt‖2 + ‖∇θt‖2
)‖U‖2

H2

≤ ε‖∇Ut‖2 +
c54

ε
‖U‖2

H2 +
c53

ε
‖∇θt‖2‖U‖2

H2 ,

where ε > 0 is a constant to be determined. Similarly, we have

|R2| ≤ ‖ρ‖L∞‖∇U‖‖Ut‖2
L4

≤ c55‖Ut‖‖∇Ut‖
≤ ε‖∇Ut‖2 +

c56

ε
‖Ut‖2.

Using Lemma 3.1 and Lemma 3.5 we have

|R3| ≤ λ

2
‖∇θt‖2 +

λ

2
‖∇U‖2

L4‖Ut‖2
L4
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≤ λ

2
‖∇θt‖2 + c57

(‖∇U‖‖∇2U‖ + ‖∇U‖2
)‖Ut‖‖∇Ut‖

≤ λ

2
‖∇θt‖2 + c58‖∇2U‖‖Ut‖‖∇Ut‖ + c59‖Ut‖‖∇Ut‖

≤ ε‖∇Ut‖2 + c60(ε)
(‖U‖2

H2‖√ρUt‖2 + ‖∇θt‖2 + ‖Ut‖2
)
;

and
|R4| ≤ λ‖θ‖H2‖Ut‖2

L4

≤ c61‖θ‖H2‖Ut‖‖∇Ut‖
≤ ε‖∇Ut‖2 +

c62

ε
‖θ‖2

H2‖√ρUt‖2.

By Sobolev embedding we have

|R5| ≤ ε‖∇Ut‖2 +
c63

ε
‖U‖2

L∞‖∇θt‖2

≤ ε‖∇Ut‖2 +
c64

ε
‖U‖2

H2‖∇θt‖2.

Since ‖�ft‖2
C([0,t];H1(Ω)) + ‖�ft‖2

C([0,t];L2(Ω)) ≤ F1, using Poincaré inequality we have

|R6| ≤ ε

c0

‖Ut‖2 +
c65

ε
‖�f‖2

L4‖θt‖2
L4

≤ ε‖∇Ut‖2 +
c66

ε
‖θt‖2

H1 ,

and

|R7| ≤ ε

c0

‖Ut‖2 +
c67

ε
‖�ft‖2‖θ‖2

L∞

≤ ε‖∇Ut‖2 +
c68

ε
‖θ‖2

H2 .

The last two terms are treated as

|R8| ≤ ‖U · ∇θ‖‖Ut‖2
L4

≤ c69‖U‖L4‖∇θ‖L4‖Ut‖‖∇Ut‖
≤ c70‖θ‖H2‖Ut‖‖∇Ut‖
≤ ε‖∇Ut‖2 +

c71

ε
‖θ‖2

H2‖√ρUt‖2;

and
|R9| ≤ λ‖Δθ‖‖Ut‖2

L4

≤ c72‖θ‖H2‖Ut‖‖∇Ut‖
≤ ε‖∇Ut‖2 +

c73

ε
‖θ‖2

H2‖√ρUt‖2.

Plugging above estimates into (3.65) we have

1

2

d

dt
‖√ρUt‖2 + μ‖∇Ut‖2 ≤ 9ε‖∇Ut‖2 + K(t)(‖√ρUt‖2 + ‖∇θt‖2) + Z(t),

where

K(t) = c74(ε)
(‖U‖2

H2 + ‖θ‖2
H2

)
,

(3.66)
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Z(t) = c75(ε)
(‖Ut‖2 + ‖U‖2

H2 + ‖θt‖2
H1 + ‖θ‖2

H2

)
.

Next, taking L2 inner product of (3.53) with Δθt we have

1

2

d

dt
‖∇θt‖2 + λ‖Δθt‖2 =

∫
Ω

(Ut · ∇θ + U · ∇θt)Δθtdx

≤ λ

2
‖Δθt‖2 + λ

(‖Ut · ∇θ‖2 + ‖U · ∇θt‖2
)
.

The second term on the RHS of (3.67) is estimated as

λ
(‖Ut · ∇θ‖2 + ‖U · ∇θt‖2

)
≤ c76‖Ut‖2

L4

(‖∇θ‖‖D2θ‖ + ‖∇θ‖2
)

+ λ‖U‖2
L∞‖∇θt‖2

≤ c77‖Ut‖‖∇Ut‖‖θ‖H2 + c78‖U‖2
H2‖∇θt‖2

≤ ε‖∇Ut‖2 +
c79

ε
‖θ‖2

H2‖√ρUt‖2 + c78‖U‖2
H2‖∇θt‖2.

It follows that

1

2

d

dt
‖∇θt‖2 +

λ

2
‖Δθt‖2 ≤ ε‖∇Ut‖2 +

c79

ε
‖θ‖2

H2‖√ρUt‖2 + c78‖U‖2
H2‖∇θt‖2.

Combining (3.66) and (3.68) we have

1

2

d

dt

(‖√ρUt‖2 + ‖∇θt‖2
)

+ μ‖∇Ut‖2 +
λ

2
‖Δθt‖2

≤ 10ε‖∇Ut‖2 + K̃(t)
(‖√ρUt‖2 + ‖∇θt‖2

)
+ Z̃(t),

where K̃(t) and Z̃(t) are equivalent to K(t) and Z(t) respectively. Choosing ε = μ/20 in

(3.69) we have

d

dt

(‖√ρUt‖2+‖∇θt‖2
)
+μ‖∇Ut‖2+λ‖Δθt‖2 ≤ 2K̃(t)(‖√ρUt‖2+‖∇θt‖2)+2Z̃(t).

By virtue of Lemmas 3.5–3.6 we know that K̃(t), Z̃(t) are uniformly integrable in time

for any t ≥ 0. Applying Gronwall inequality to (3.70) we have

‖(√ρUt,∇θt)(·, t)‖2 ≤ c79, and

∫ t

0

‖(∇Ut, Δθt)(·, τ)‖2dτ ≤ c80, ∀ t ≥ 0.

Plugging the first part of (3.71) into (3.70) we have

d

dt

(‖√ρUt‖2 + ‖∇θt‖2
)

+ μ‖∇Ut‖2 + λ‖Δθt‖2 ≤ c81Y (t),

where

(3.67)

(3.68)

(3.69)

(3.70)

(3.71)

(3.72)

Y (t) = ‖Ut‖2 + ‖U‖2
H2 + ‖θt‖2

H1 + ‖θ‖2
H2 .

By virtue of (3.63), Poincaré inequality and Lemma 2.3 we have

(3.73)Y (t) ≤ c82

(‖Ut‖2 + ‖∇U‖2 + ‖∇θt‖2 + ‖Δθ‖2
)
.

Plugging (3.73) into (3.72) we have

(3.74)
d

dt

(‖√ρUt‖2 + ‖∇θt‖2
)

+ μ‖∇Ut‖2 + λ‖Δθt‖2 ≤ c83‖(Ut,∇U,∇θt, Δθ)‖2.
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where
E3(t) ∼= ‖(θ, θt, U)‖2

H1 + ‖Ut‖2,

D3(t) ∼= ‖(θ, θt)‖2
H2 + ‖(U,Ut)‖2

H1 .

Then the lemma follows directly from (3.63), (3.71), (3.75) and Lemma 3.6. This com-

pletes the proof.

As a consequence of Lemma 3.7 we have

Lemma 3.8. Under the assumptions of Theorem 1.1, there exist positive constants α6

and β6 independent of t such that for any t ≥ 0 it holds that

‖θ(·, t)‖2
H3 ≤ α6e

−β6t.

Proof. By virtue of Lemma 2.3 we have

‖θ‖2
H3 ≤ c3‖Δθ‖2

H1 ≤ c85

(‖Δθ‖2 + ‖∇θt‖2 + ‖∇(U · ∇θ)‖2
)

≤ c86

(‖Δθ‖2 + ‖∇θt‖2 + ‖U‖2
H2‖θ‖2

H2

)
.

Then the lemma follows from Lemma 3.6 and Lemma 3.7. This completes the proof.

‖U‖H3h) Decay of

Lemma 3.9. Under the assumptions of Theorem 1.1, there exist positive constants α7, β7

and γ6 independent of t such that for any t ≥ 0 it holds that

‖U(·, t)‖2
H3 ≤ α7e

−β7t, and

∫ t

0

(‖θt(·, τ)‖2
H2 + ‖Utt(·, τ)‖2

)
dτ ≤ γ6.

Proof. Taking L2 inner product of (3.64) with Utt we have

(3.76)

μ

2

d

dt
‖∇Ut‖2 + ‖√ρUtt‖2

=

∫
Ω

[− ρtUt − ρtU · ∇U − ρUt · ∇U − ρU · ∇Ut

+λ
(∇ρt · ∇U + ∇ρ · ∇Ut + Ut · ∇(∇ρ) + U · ∇(∇ρt)

)
+ �fρt + �ftρ

] · Uttdx.

Using previously established estimates and Lemma 2.4, we can show that (since there is

no essential difficulties, we omit the details)

(3.77)
μ

2

d

dt
‖∇Ut‖2 +

1

2
‖√ρUtt‖2 ≤ c87

(‖∇Ut‖2 + ‖θt‖2
H2 + ‖θ‖2

H2

)
.

By absorbing the RHS of (3.77) into the LHS of (3.75) we have

(3.78)
d

dt
E4(t) + c88D4(t) ≤ 0, ∀ t ≥ 0,

where
E4(t) ∼= ‖(U,Ut, θ, θt)‖2

H1 ,

D4(t) ∼= ‖(θ, θt)‖2
H2 + ‖(U,Ut)‖2

H1 + ‖Utt‖2.

So that, for any t ≥ 0 it holds that

(3.79)‖Ut(·, t)‖2
H1 ≤ c89e

−c90t, and

∫ t

0

(‖θt(·, τ)‖2
H2 + ‖Utt(·, τ)‖2

)
dτ ≤ c91.
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With the help of previous estimates and Lemma 2.1, by direct calculations, we have

‖U‖2
H3 ≤ c92

(‖U‖2
H2 + ‖θ‖2

H3 + ‖Ut‖2
H1

)
.

Then the lemma follows from Lemma 3.7, Lemma 3.8 and (3.79). This completes the

proof.

‖(θ, U)‖H4

We now prove the uniform estimates of ‖(θ, U)‖H4 in order to complete the proof of

Theorem 1.1.

Lemma 3.10. Under the assumptions of Theorem 1.1, there exists a positive constant γ7

independent of t such that for any t ≥ 0 it holds that∫ t

0

‖(U, θ)(·, t)‖2
H4dτ ≤ γ7, ∀ t ≥ 0.

Proof. By Lemma 2.3, Lemma 2.1 and Lemma 3.9, it is straightforward to show that

(3.80)
‖θ‖2

H4 ≤ c93

(‖θt‖2
H2 + ‖θ‖2

H3

)
,

‖U‖2
H4 ≤ c94

(‖Ut‖2
H2 + ‖θ‖2

H4

)
.

Since Ut|∂Ω = 0, by Lemma 2.1 and (3.64) we have

(3.81)‖Ut‖2
H2 ≤ c95

(‖Utt‖2 + ‖ρt‖2
H2 + ‖U‖2

H3‖ρ‖2
H3

)
.

Then the lemma follows from Lemma 3.9, (3.80) and (3.81). This completes the proof.

Lemmas 3.8–3.10 conclude our main result, Theorem 1.1.

i) Uniform estimate of
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